GWAS-Assisted Genomic Prediction for Forage Yield Under Deficit Irrigation Management in Elite Alfalfa (*Medicago sativa* L.) Germplasm

Harpreet Kaur, Cesar A. Medina, Christopher Pierce, Arshdeep Singh Gill, Jon Reich, Steve Damon[,] Long-Xi Yu, Ian Ray

Introduction

- Alfalfa (*Medicago sativa L.*) is a perennial forage legume.
- Most cultivars are autotetraploid (2n=4x=32).
- Arid and semi-arid regions in the U.S. possess limited water resources for alfalfa irrigation.
- Genome-wide Association Study (GWAS) and Genomic Prediction

Image source: https://droughtmonitor.unl.edu

Step 1: Phenotyping and Genotyping

- Phenotyping
 - Elite germplasm 215 maternal half sib families
 - Forage yield under deficit irrigation management
 - Two locations NM and CA
 - Three years 2018, 2019, 2020

- Genotyping
 - 215 maternal parents
 - Genotype-by-sequencing 12,884 Single Nucleotide Polymorphism (SNP) marker

Statistical associations by integrating phenotypic and genotypic data using R based software GWASpoly (Rosyara et. al., 2016)

Step 2: Genome-wide association study

Location	Month Year	Marker	Score	Effect
NM	April 2018	chr4_06222	5.539	NA
	May 2018	chr1_00200	5.325	-0.407
	June 2018	chr1_00200	6.107	-0.148
			6.107	NA
			6.107	-0.298
			6.107	-0.352
	October 2018	chr2_01985	5.754	0.252
			5.754	0.503
			5.754	0.510
CA	May 2020	chr3_03883	5.300	-0.382

 Very few significant marker-trait associations identified based on 0.05 FDR threshold (Score > 5)

Threshold Score more than 1

Example: Marker chr1_00056 In CA

Threshold Score more than 1

Example: Marker chr1_00056 In CA

Regrowth	May	June	July	July	Aug	Sept	Total	Total
cycle	2018	2019	2019	2018	2019	2019	2018	2019
Effect	-0.442	-0.365	-0.580	-0.420	-0.454	-0.222	-1.420	-1.292
(Score)	(1.068)	(1.055)	(2.775)	(2.345)	(2.454)	(2.118)	(1.488)	(1.161)

Threshold Score more than 1

Example: Marker chr1_00056 In CA

Regrowth	May	June	July	July	Aug	Sept	Total	Total
cycle	2018	2019	2019	2018	2019	2019	2018	2019
Effect	-0.442	-0.365	-0.580	-0.420	-0.454	-0.222	-1.420	-1.292
(Score)	(1.068)	(1.055)	(2.775)	(2.345)	(2.454)	(2.118)	(1.488)	(1.161)

In NM

July	June	June	June	May	Oct	Oct	Total	Total	Total
2020	2018	2019	2020	2018	2019	2020	2018	2019	2020
-0.501	-0.144	-0.205	-0.452	-0.211	-0.327	-0.421	-0.434	-0.833	-1.369
(2.267)	(1.351)	(1.32)	(1.568)	(1.757)	(1.96)	(2.807)	(1.195)	(1.254)	(2.462)

Effect of DNA Markers on Forage Yield and Quality

Yield DNA Marker	NM NDF '18	NM NDF '19	NM IVD'18	NM IVD '19	NM LIG '18	NM LIG '19	NM CP '18	NM CP '19	CA Yld Tot18	CA Yld Tot19	NM Yld Tot181920
1500			-0.39				-0.33		1.26	2.49	1.03
2500									-1.97	-2.84	
4500	-0.52	-0.79	0.49	0.70		-0.16	0.40	0.44		-1.99	-0.83
6500									1.82	2.14	1.34
8000		-0.59		0.42		-0.11			-2.25	-2.37	-1.74
9800									-1.78	-2.23	-1.31
11000									1.66	1.90	1.43
12884	0.55		-0.44						1.84	2.25	1.33

NM, New Mexico; CA, California; Yld, Yield; NDF, neutral detergent fiber; IVD, in vitro digestibility; LIG, lignin; CP, crude protein; Tot, total. Direction of DNA marker effects for yield & quality are consistent over time and make sense biologically!!

Effect of DNA Markers on Forage Quality and Yield

Forage Quality DNA Marker	NM NDF '18	NM NDF '19	NM IVD'18	NM IVD '19	NM LIG '18	NM LIG '19	NM CP '18	NM CP '19	CA Yld Tot18	CA Yld Tot19	NM Yld Tot181920
5000	-0.42	-0.32	0.34	0.27	-0.08	-0.08	0.26	0.18		-0.71	
6329	-0.78	-0.41	0.70	0.35	-0.18	-0.12	0.48	NA	1.06		
6330	0.59	0.45	-0.63	-0.36	0.18	0.12	-0.37	-0.19			

NM, New Mexico; CA, California; Yld, Yield; NDF, neutral detergent fiber; IVD, in vitro digestibility; LIG, lignin; CP, crude protein; Tot, total.

Step 3: Genomic Prediction

 Nine GP models - Ridge Regression Best Linear Unbiased Prediction (rrBLUP), Genomic BLUP (GBLUP), Support Vector Machine (SVM) -Linear, SVM-Gaussian, Random Forest (RF), BayesA, BayesB, BayesC, and Bayesian LASSO (BL)

Three Approaches

- **Approach 1**: Genomic prediction modelling with all 12,884 markers
- Approach 2: 1,915 2,132 SNP markers identified with Score (-log₁₀ p-value) more than 1 from GWAS results to run the GWAS-assisted genomic prediction
- Approach 3: Weighted GBLUP with all 12,884 markers using Scores as weights (Medina et. al., 2021) from GWASpoly 6 gene action models (Rosyara et. al., 2016)

GWAS-Assisted Genomic Prediction results

GWAS-Assisted Genomic Prediction results

Final Remarks

- Relaxation of GWAS analysis score thresholds may facilitate identification of a subset of biologically relevant SNP markers which can be included in genomic selection models to improve prediction accuracies.
- WGBLUP models also enhance prediction accuracies, and with a large number of markers, they are computationally less intensive compared to machine-learning and Bayesian models.
- Independent validation of these genomic prediction models is needed.
- Contingent upon validation, selected SNP markers may be useful for developing elite alfalfa germplasm that can be productive under deficit irrigation management.

Acknowledgements

Dr. Ian Ray Christopher Pierce Arshdeep Singh Gill Dr. Jon Reich Dr. Steve Damon

Dr. Long-Xi Yu Dr. Cesar M. Culma

<u>Funding support</u> - Alforex Seeds & New Mexico Agricultural Experiment Station

<u>Genotyping & phenotyping</u> – Alforex Seeds, New Mexico State University, USDA-ARS (Prosser, Washington)

Forage Quality Poster: P10

and a share the

Thank you